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Quasi-static bubble formation on submerged orifices
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Abstract

The static formation of air bubbles emanating from a submerged orifice was analyzed based on the principles of

force balance. The analysis was corroborated by experiments using a shadow imaging technique. The influence of

the Young contact angle of the three material components was investigated by identifying two modes of formation,

corresponding to bubble formation at the orifice rim and spreading of the bubble base on the horizontal surface around

the bubble. The characteristics of the formation process such as shape, height and volume of the bubble and the non-

dimensional pressure difference at the orifice are given for both modes up to the critical equilibrium, defined by the max-

imum bubble volume, at which the bubble releases dynamically.
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1. Introduction

Bubble formation at submerged orifices has wide-

spread applications in various technological processes.

Because the phenomena that occur are highly complex,

attempts have been made to isolate some parameters

systematically and to investigate them both analytically

and experimentally. In the case of very small flow-rates

and constant gas flow conditions, the formation takes

place in a quasi-static manner and can thus be described

by the Laplace equation as an equilibrium of surface,

pressure and gravitational forces acting on the bubble

surface [1,2]. The resulting ordinary differential equation

can be solved numerically in such a way that complete
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sequences of bubble characteristics such as shape, vol-

ume, height and pressure variations at the orifice mouth

are obtained up to the point of critical equilibrium,

where the bubble reaches its maximum volume and will

inevitably be released when further flow is added or if

any small perturbation is applied [3,4].

Most of the work related to the bubble formation at

submerged orifices require the bubble base to be fixed at

the orifice rim [1,3–5], which is called mode A in the fol-

lowing. As an extension of this model, the influence of

the wettability of the solid surface was investigated. This

effect is characterized by the Young contact angle h0,
which is the angle at equilibrium formed at the contact

line of three phases on a horizontal and perfectly smooth

surface [6]. In the present system the components are

water, air and a solid surface, whereby the Young con-

tact angle is measured from the horizontal plate through

the liquid. It is known from Gibbs�s inequalities [7], if

a three-phase contact line coincides with an edge on a

solid surface, the contact angle h can take values of
ed.
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Nomenclature

a Laplace constant (Eq. (6))

g gravitational acceleration

h0 submergence of the bubble apex

H submergence of the orifice

K orifice constant

P pressure

Pr capillary pressure

P0 ambient pressure

Ph hydrostatic pressure

DPs non-dimensional pressure difference (Eq.

(18))

Q flow-rate through the orifice

rb radius of bubble base

rs orifice radius

R0 radius of curvature at the apex of the bubble

R1,R2 radii of curvature

V bubble volume

Vn bubble volume above the bubble neck

x radial coordinate component

y axial coordinate component

ys bubble height

Greek symbols

b shape factor (Eq. (8))

h instantaneous contact angle

h0 Young contact angle

hA advancing contact angle

hR receding contact angle

l dynamic viscosity

q density

r surface tension

Subscripts

ch chamber

crit critical value

exp experimental value

g gas

l liquid

max maximal value

min minimal value

s quantity at the orifice

0 quantity at the apex of the bubble

Superscript

- dimensional length
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h0 6 h 6 (180� � /) + h0, where / is the angle of the so-

lid wedge. This was derived theoretically by Dyson [8]

and was proved experimentally by Mason and co-work-

ers [9,10]. For the present case of a quasi-static bubble

formation at a submerged orifice (/ = 90�), this means

that the instantaneous contact angle h at the orifice

rim will not fall below the Young contact angle h0 under
static and ideal surface conditions. Instead, if h reaches

h0, the contact line will spread outward on the horizon-

tal surface with h = h0, called in the following mode B

formation as in Ref. [11]. An exact analytical solution

of the underlying ordinary differential equation of both

modes exists only for very small bubbles or drops

[11,12], i.e. near zero-gravity conditions, which is not

valid for the orifice radii considered here.

Several theoretical investigations of the kind pre-

sented here exist for the case of a sessile or hanging drop.

These studies on liquid drops apply the calculus of var-

iations, whereby the change of the surface and potential

energy due to small perturbations is considered, in order

to find the characteristics at critical equilibrium, at

which the volume of the drop reaches its maximal value

and continues in an unstable and statically non-predict-

able manner [13–15]. Since these problems belong to the

same family of analytical/numerical considerations as a

submerged bubble forming in equilibrium, the available
results of drop investigations were used for a correct the-

oretical description of the present work.

Comparisons between the solutions of the Laplace

equation and experiments can be found for hanging

drops [16] and external interfaces to a circular cylinders

[17]. Longuet-Higgins et al. [4] confirmed their theoreti-

cally calculated shapes of a bubble formed at the rim of

an orifice (mode A) by comparing the bubble height. A

fairly close agreement was obtained. Very recently Gny-

loskurenko et al. [18] performed an experimental study

on the influence of wetting conditions on the bubble for-

mation under quasi-static conditions. With help of re-

corded pictures they described the development of the

parameters of interest. The theory of contact angle hys-

teresis was used to explain the results. Unlike this inves-

tigation the authors have chosen a different approach. A

model was developed to compute complete formation

processes following modes A and B by solving the

Laplace equation under given boundary conditions, in

which the bubble base is allowed to spread over the sur-

rounding plate. This method provides us with an exact

knowledge of the characteristics during the quasi-static

formation under ideal conditions. Under such condi-

tions the surface is perfectly smooth and no surface

inhomogeneities are present, i.e. no contact angle hyster-

esis is occurring. To verify the predicted bubble shapes
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for the two modes a projection method (shadow imag-

ing) was applied. The measurements were made under

static conditions for three orifice radii (0.5, 1 and

2mm) and two orifice materials (brass and Teflon).

The characteristics at bubble departure obtained theo-

retically were found to differ significantly between the

two modes of formation. This demonstrates the impor-

tance of the plate material employed in combination

with the fluids, which has not received considerable

attention up to now. Some disagreement between theo-

retical and experimental results arose for the case of

mode B formation owing to the imperfect surface condi-

tion always present in experiments, but the present re-

sults were found to be consistent with the theory of

contact angle hysteresis of moving contact lines [19].

This paper is arranged as follows. Starting from the

force balance at a point of the interface of a static bub-

ble, a non-dimensional ordinary differential equation is

derived and numerical solutions are obtained for differ-

ent boundary conditions. The experimental approach of

shadow imaging is described in Section 2. The results are

introduced by a discussion about the parameters per-

taining to the present quasi-static case. Subsequently

the theoretical results are demonstrated and compared

with the experimental data obtained for the modes A

and B bubble formation. Finally, conclusions are drawn.
2. Theoretical prediction of the bubble profile

Let us consider the configuration of a bubble growing

on a small, submerged orifice. The origin of the coordi-

nate system is placed in this case at the vertex with a �y-
coordinate pointing downwards in the direction of the

gravitational force, as indicated in Fig. 1. While consid-
Fig. 1. Choice of coordinate system and balance of forces.
ering the quasi-static formation of the bubble, the effect

of the flow through the orifice on the pressure variations

and the influence of the viscous stresses are assumed to

be negligible small. The remaining forces acting on an

interfacial element are the gas pressure Pg, the capillary

pressure Pr, the ambient pressure P0 and the hydrostatic

pressure Ph. The resultant pressure balance is

P g ¼ P r þ P 0 þ P h

¼ 1

R1

þ 1

R2

� �
rþ P 0 þ qlgð�h0 þ �yÞ; ð1Þ

where R1 and R2 are the radii of curvature of the interface

at the point ð�x; �yÞ; r is the (constant) surface tension, q is

the density of either the liquid or gas (subscript l or g), g

is the acceleration due to gravity and the bar denotes that

all the marked quantities express dimensional lengths.

The bubble pressure can be written as

P g ¼ P g;0 þ qgg�y ¼
2r

R0

þ P 0 þ qlg�h0 þ qlg�y; ð2Þ

where Pg,0 is the bubble pressure at the vertex, where the

radius of curvature of the bubble apex is R1 ¼ R2 ¼ R0.

Introducing Eq. (2) into (1), we obtain

2r

R0

¼ 1

R1

þ 1

R2

� �
rþ ðql � qgÞg�y: ð3Þ

For the solution of Eq. (3) we apply the following rela-

tions for the radii of curvature:

R1 ¼
ð1þ �y02Þ3=2

�y00
; R2 ¼

�xð1þ �y02Þ1=2

�y0
; ð4Þ

where primes indicate the derivative with respect to �x,
yielding an ordinary differential equation as follows

�y00

ð1þ �y02Þ3=2
þ �y0

�xð1þ �y02Þ1=2
¼ 2

R0

� 2�y
a2

; ð5Þ

where

a2 ¼ 2r
ðql � qgÞg

ð6Þ

is the Laplace constant. By normalizing Eq. (5) with

respect to a, i.e. x ¼ �x=a, y ¼ �y=a and R0 ¼ R0=a, we

obtain the following non-dimensional form:

y00

ð1þ y02Þ3=2
þ y0

xð1þ y02Þ1=2
¼ 2

R0

� 2y: ð7Þ

For static bubble formation as considered in this paper,

no closed-form solution appears to exist for this ordi-

nary differential equation in which the radius of curva-

ture at the vertex remains as a parameter. Only for the

case of very small bubbles or drops, where the condi-

tions are near to zero-gravity conditions, Chesters [12]

found an analytical solution of Eq. (7). This solution

can be assumed to be a good approximation, if the

�shape factor� b obeys



Fig. 2. Orifice geometry.
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b ¼
ðql � qgÞgR0

r
6 0:1: ð8Þ

To provide a numerical solution, Eq. (7) can be re-

duced to two first-order equations by substitution of

z ¼ y0

ð1þ y02Þ1=2
ð9Þ

according to Lohnstein [20]. This results in the following

first-order differential equations:

dz
dx

¼ � z
x
þ 2

1

R0

� y
� �

; ð10Þ

dy
dx

¼ z

ð1� z2Þ1=2
; ð11Þ

which can be integrated with the initial conditions

y ¼ 0 and z ¼ 0 at x ¼ 0:

Care has to be taken when dy/dx � 1, because this

represents an inflection point of the computed bubble

shape. After reaching dy/dx = 1, the dependent variable

is changed by substituting u = (1 � z2)1/2. From there

onwards, we solve for x by advancing y with help of

the following equations:

du
dy

¼ ð1� u2Þ1=2

x
� 2

1

R0

� y
� �

; ð12Þ

dx
dy

¼ u

ð1� u2Þ1=2
: ð13Þ

The final values of the solution of Eqs. (10) and (11), say

y1 and x1, are used as the initial conditions for solving

Eqs. (12) and (13).

Based on the solution of Eqs. (10)–(13), the non-

dimensional bubble volume V can be determined by par-

tial integration:

V ¼ p
Z y

0

x2 dy ¼ px2y � 2p
Z x

0

xy dx: ð14Þ

Eq. (10) can be written as d(xz)/dx = 2x(1/R0 � y),

which allows us to calculate Eq. (14) as

V ¼ px zþ x y � 1

R0

� �� �
: ð15Þ

The non-dimensional pressure variation can be obtained

in the following way [1]. The pressure at the apex can be

written as

P g;0 ¼
2r

R0

þ P 0 þ qlgðH � �ysÞ: ð16Þ

This can be introduced into Eq. (2) to obtain the pres-

sure at the orifice as follows

P g;s ¼
2r

R0

þ P 0 þ qlgH � gðql � qgÞ�ys: ð17Þ
The non-dimensional pressure difference at the orifice is

then

DPs ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2rgðql � qgÞ
q ðP g;s � P 0 � qlgHÞ ¼ 1

R0

� ys:

ð18Þ
3. Experimental study: shadow imaging

In the present investigation, attempts were made to

validate the theoretical predictions of static bubble for-

mation on submerged orifice experimentally. For meas-

urements of the bubble contour, we applied a shadow

image method in which an ‘‘imperfect’’ diffuser, as rec-

ommended by Lunde and Perkins [21], was placed at

the opposite side of a CCD camera. For the actual inves-

tigation, the orifice was placed in a container and sub-

merged 15cm below the free water surface. The bubble

growing on the orifice produced a sharp shadow in the

far field which was recorded by the CCD camera. An

infusion pump was used together with a gas-tight glass

syringe (10ml) to provide a constant flow-rate through

the orifice. The infusion pump controlled the inflow rate

through the orifice in the range 9 · 10�4ml/min <

Q < 20ml/min with less than 0.1% error. The syringe

was equipped with a capillary of length 5cm and inner

diameter 0.8mm. The orifice (Fig. 2) was connected to

the thin capillary of the air supplying syringe to reduce

the influence of the chamber volume on the formation

process [1,5]. Orifice radii of 0.5, 1 and 2mm are consid-

ered in the present experiments. In order to verify the

theoretical predictions of modes A and B, i.e. the forma-

tion at the orifice rim and the spreading of the bubble

base, orifice plates made of brass and Teflon were used.

According to the Young contact angle (h0), measured

from the liquid side of the contact line, Teflon

(h0 = 108�, [6]) in combination with water and air is well

documented as a non-wetting (h0 > 90�) material under

ideal conditions, in contrast to wetting materials with

(h0 < 90�). As shown in the subsequent section, high val-

ues of h0 can force the bubble base to spread over the

plate surface (mode B), so that the Teflon plates were

lapped to yield nearly smooth surfaces for mode B
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experiments. In contrast, if the bubble base remains at

the orifice rim (mode A), h0 has no influence of the for-

mation process. Hence, for the validation of the bubble

shapes forming during mode A formation, brass plates

were used, which were not subject of special surface

treatments.

Demineralized water was used in all experiments in

order to minimize the effect of liquid contamination on

the bubble formation process. The large cross-section

of the water tank (100 · 100mm) relative to the size of

the bubbles ensured that the influence of the tank walls

was negligible small.

For capturing the shape of the bubble at various

stages of the formation process, an 80c60 HiSense

CCD camera was used equipped with 1280 · 1024 light

sensitive cells. We employed a field of view of typically

23.5 · 18.8mm with a spatial resolution of about

1.8 · 10�5m/pixel.

In order to extract the bubble outline from the inten-

sity image obtained by the CCD camera, the following

image processing method was applied. From the inten-

sity histogram the intensity threshold was carefully

determined to convert the gray-scale image into a binary

image. The outline of the bubble was then preserved by

means of an edge detection algorithm. Hence a closed

contour of the bubble, i.e. of the entire bubble shape,

was obtained by an 8-connected sequence of pixels (typ-

ically 300–1000 coordinate points depending on the size

of the bubble).
4. Results and discussion

Attempts were made to improve upon the basic

knowledge of the physics of bubble formation on up-

ward-facing orifices. The authors� own investigations

and publications in the literature show that the entire

topic appears to be very complex. Clift et al. [5] listed

the following influencing parameters on the bubble

volume for a perfectly wetted orifice:

V bubble ¼ f ðQ;�rs; ql; ll; r; qg; lg;K; V ch; g;HÞ; ð19Þ

where Q is the time-mean flow-rate, K is an orifice con-

stant, Vch is the chamber volume below the orifice and

�rs, ql, ll, qg, lg, r, g and H are the orifice radius, density

and viscosity of the liquid and the gas, respectively, the

surface tension, the gravitational acceleration and the

submergence as defined in Section 2. Simplifications

can be made, taking into consideration the effect due

to the chamber volume and the connection between

the orifice and chamber. If the chamber volume is very

large compared with the bubble volume formed, the

pressure in the chamber is not influenced significantly

by the varying flow-rate through the orifice, and this

case is thus called the constant pressure case. The other
limiting case for the bubble formation on orifices is the

constant flow regime, whereby the pressure drop be-

tween orifice and chamber is higher than the pressure

variations in the bubble.

By applying the experimental setup described in Sec-

tion 3, conditions of a constant flow regime could be

produced. The use of the syringe pump allowed the

flow-rate Q to be accurately decreased to very small val-

ues. Typically the flow-rate was set to 0.01ml/min, which

resulted in bubble formation times of several minutes.

This clearly justifies the assumption of quasi-static bub-

ble formation. Comparisons of bubble shapes from

experiments with different flow-rates (0.005 6 Q 6 5ml/

min) and the corresponding data from numerical com-

putations showed that under such conditions the bubble

volume after departure was independent of the flow-rate

through the orifice. An increase in Q caused an increase

in the bubble frequency, as also stated in the literature

[5].

Taking the above considerations into account, Eq.

(19) can be simplified by omitting the parameters Q,

ll, lg, Vch and K. The ordinary differential Eq. (5), which

describes the shape of a bubble in equilibrium, has no

dependence on the submergence H. Hence we also can-

cel H, which leaves us with the following expression:

V bubble ¼ f ð�rs; ql; r; qg; gÞ: ð20Þ

qg can easily be included in the theoretical treatment in

Section 2 and thus remains, despite qg � ql for water

and air. Considering Eq. (20), it comes out that the vol-

ume of the static bubble formed at the rim of an orifice

can be characterized by rs ¼ �rs=a ¼ �rs=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r=ðql � qgÞg

q
,

whereby the Laplace constant results from Eq. (5) to

be the unit length for normalization.

Since the parameters given in Eq. (19) are only valid

for a perfectly wetted orifice, a further parameter has to

be incorporated, which takes the wettability of the ori-

fice into account. The bubble forms at the rim of the ori-

fice if the instantaneous contact angle h (see Fig. 1)

during bubble formation is larger than the Young con-

tact angle h0, which is defined by the equilibrium of

the contact line between gas, liquid and solid. Otherwise,

if h becomes h0, the bubble base spreads out, keeping the
contact angle constant as h = h0 [7–11]. These two modes

are denoted below modes A and B according to Chesters

[11]. Accurate knowledge about these two modes are

necessary, since, as will be shown, the maximal static

bubble volume can differ significantly between the two

modes. Furthermore, the Young contact angle is very

sensitive to the ambient conditions such as roughness

of the plate and liquid contamination by surface-active

substances. Hence modes A and B are examined theoret-

ically based on the analytical solution and compared

with the experimental results obtained under quasi-static

conditions.
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4.1. Mode A bubble formation

In order to investigate bubble formation under quasi-

static conditions theoretically, Eqs. (10)–(13) were

solved employing a fourth-order Runge–Kutta scheme.

For a given orifice radius rs a sequence of bubble shapes

can be found by varying the parameter R0 (radius of cur-

vature at the apex). The numerical calculations were

started with R0 ! 1, the bubble volume V = 0 and

the height of the apex ys = 0, i.e. a horizontal free air/

water interface. To proceed with the computations R0

was decreased in small steps and the computations

searched for a new bubble shape with a slightly in-

creased volume and height. The increase in bubble vol-

ume from step to step in the calculations was restricted

to a small value in the present implementation, since

more than one solution exists if rs and R0 are fixed

[13]. Those additional solutions turn out to be unstable

and thus can be reached in experiments only transiently

[4]. In order to avoid a jump in the bubble volume V, the

apex radius R0 and the bubble height ys, the computa-

tions only allowed changes of V and R0 to be extremely

small. It was also required that the height of the bubble

ys increased successively with volume, which was shown

by Pitts [15] theoretically to result in the stable forma-

tion of bubbles exposed to all physically possible pertur-

bations. Following this procedure, the computations

resulted in a sequence of bubble characteristics, which

describe the stable stages of a bubble formed at an

underwater orifice. For each orifice radius, the computa-

tions finally reached a point where no further solution

according to the above restrictions could be found.

The volume of the bubble at this critical equilibrium cor-

responded to the maximal volume [3,13], denoted Vmax.

At this final stage any perturbation, e.g. a continuation

of the flow through the orifice, leads inevitably to the re-

lease of the bubble.
Fig. 3. Development of the bubble shape for rs = 0.259 (�rs ¼ 1mm, (a)

V are normalized with the Laplace constant a (see Eq. (6)).
The accuracy of the numerical approach was vali-

dated by recalculation of the results of Longuet-Higgins

et al. [4], who used a solution process following Pitts [14]

and therefore different to the present one. For example,

for an orifice radius rs = 0.35355 (corresponding to the

case of a diameter D = 1 normalized with the unit of

length of (r/qg)1/2 used in Ref. [4]) our results agree with

their data for the values at critical equilibrium R0 and

Vmax within the accuracy of the third decimal place gi-

ven in [4].

The results obtained in the authors� computation are

shown in Figs. 3 and 4. The quantities x, y, R0 and V are

all normalized with the Laplace constant a (=3.858mm

for water and air at ambient temperature; see Eq. (6)),

the non-dimensional pressure difference is defined in

Eq. (18) and the instantaneous contact angle h at the

bubble base is given by

dy
dr

¼ tanðhÞ; ð21Þ

and needs, together with Eq. (11), no further

explanation.

To explain static bubble formation further it is worth

noting that the bubble formation starts with a flat sur-

face defined by R0 !1, ys = 0 and h = 180�. During

the initial stage R0 decreases and the pressure difference

at the orifice mouth increases with volume. If the orifice

radius is smaller than a critical value of rs,crit = 0.6343

(e.g., [4]), the parameter R0 will pass through a mini-

mum, as can be seen in Fig. 3(b), e.g., at rs = rs,crit the

tangent at the point of inflection of the profiles becomes

vertical.

The results presented here both theoretically and

experimentally focus on rs < rs,crit. Detailed examina-

tions of Figs. 3(b) and 4 show that the minimum in R0

and h and the maximum in the pressure difference are

not located at the same volume V for constant rs. It
) and the parameter R0 for different orifice radii (b). x, y, R0 and
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Fig. 4. Development of the non-dimensional pressure difference DPs at the orifice (a) and the instantaneous contact angle h at the

bubble base (b) for different orifice radii.
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can clearly be seen that the characteristics of small rs
show strong variations during static bubble formation,

which can be ascribed to the predominant role of surface

tension for small bubbles. In contrast, R0 stays approx-

imately constant for large values of rs (Fig. 3(b)). Since

the results in this section are concerned with mode A

of bubble formation, the bubble base is fixed at the ori-

fice edge. If the instantaneous contact angle h falls below
the Young contact angle, the bubble base begins to

spread (mode B). As shown in Fig. 4(b) small orifice

radii favor spreading of the bubble base, since smaller

values of h are reached during formation. Further

discussions about mode B are presented in the next

section.

Using the experimental setup described in Section 3,

the authors were able to provide constant flow condi-

tions and the bubbles could be produced in a quasi-static

manner. Orifice plates made of brass were used to obtain

bubble formation processes following mode A. Fig.

5(a)–(d) compare the predicted and the experimentally

obtained bubble shapes for different stages of growth

for the case of rs = 0.259. The agreement is indeed excel-

lent. (All experimental results of bubble contours are

shown by their pixel coordinates, which appear in the

figures as a solid line.) The corresponding theoretical

contour was determined by fixing rs, ys and the area con-

fined by the contour. Since the calculation of the axisym-

metric bubble volume based on the experimental data

would require an interpolation of the pixel coordinates,

the quality of the contours was verified by comparing

the area instead. Differences in area smaller than 1.5%

confirm the accuracy of the experimental approach.

For convenience, each stage of formation shown is

marked in an R0–ys plot (Fig. 5(e)). Additionally, Fig.

6 gives an impression of the static bubble growth at

the larger orifice radius investigated (rs = 0.518,

�rs ¼ 2mm). The smallest orifice radius (rs = 0.130) was
found to spread outwards (mode B). This is in agree-

ment with the predictions given above that small orifices

facilitate the bubble base to spread, since smaller values

of h are obtained during formation (Fig. 4(b)).

Table 1 summarizes the results obtained from the

computations (Vmax,R0,max,ys,max,Vn,hmin) and the

experiments (ys,exp) related to mode A formation of

bubbles. Here Vmax is the maximal volume at critical

equilibrium, R0,max and ys,max are the corresponding ra-

dius of curvature and the height of the apex, Vn is the

gas volume above the neck at the critical equilibrium

and hmin is the smallest instantaneous contact angle ob-

tained for constant rs. Vn is assumed to describe the

total volume of a released bubble more precisely since

it cannot be expected that the complete air mass above

the orifice detaches. In general, Vn is smaller than V and

only exists for rs < rs,crit. Additionally, ys,max is com-

pared between theory and experiment for the three

cases considered (�rs ¼ 0:5, 1 and 2mm). The smallest

orifice (rs = 0.130) is found to result in bubble release

following mode B, which is due to fact that small ori-

fices reach smaller values of h at the bubble base (see

Fig. 4(b)). Results of mode B formation are provided

in the following section. The maximal heights of ys,max

in the two remaining cases (rs = 0.259 and 0.518) are

8.6% and 8.4% lower than the predicted value. This

can be explained by the experimental uncertainties

and the small vibrations always present in experimental

measurements.

4.2. Mode B bubble formation

Similarly to the previous section, mode B bubble for-

mation will be discussed first from the theoretical point

of view and then it will be compared with the experi-

ments undertaken. Instead of fixing the bubble base to

a specific value (mode A), we permitted in a second set
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Fig. 5. Comparison between the theoretical solution of static bubble formation with the experimental results using shadow imaging

and image processing ((a)–(d)). In (e) the corresponding stages are marked on an R0–ys plot. The orifice radius is rs = 0.259.
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of computations the bubble base to spread if the instan-

taneous contact angle of the bubble h fell below the

Young contact angle h0. Then the bubble base moved

outwards with a constant contact angle and was found

to reverse its direction before departure. This means that

the model of mode B bubble formation starts also with a

horizontal surface (R0 ! 1, V = 0 and ys = 0) and the
bubble grows following mode A until h reaches h0.
The present calculations were performed with an orifice

radius rs of 0.259 (�rs ¼ 1mm). Hence the proposed model

for computing the formation of bubbles only switched

from mode A to mode B formation if h0 > hmin(rs =

0.259) = 55.90 was defined (see Table 1), otherwise the

bubble was formed at the rim of the orifice (mode A).
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Fig. 6. Comparison between the theoretical solution of static bubble formation with the experimental results using shadow imaging

and image processing. The orifice radius is rs = 0.518 (�rs ¼ 2mm).

Table 1

Summary of the results of mode A bubble formation

rs Vmax R0,max ys,max Vn hmin ys,exp

0.130 0.325 0.375 0.325 0.324 39.26 Mode B

0.2 0.483 0.411 1.285 0.480 48.97 –

0.259 0.618 0.433 1.392 0.609 55.90 1.271

0.3 0.714 0.446 1.456 0.694 60.29 –

0.4 0.961 0.473 1.574 0.890 69.94 –

0.5 1.229 0.495 1.661 1.053 78.54 –

0.518 1.281 0.499 1.673 1.078 80.03 1.532

0.6 1.522 0.515 1.725 1.166 86.38 –

0.7 1.837 0.534 1.774 – 93.67 –
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In mode B bubble formation, the radius of the bubble

base was denoted rb.

The results are shown in Figs. 7–10. Depicted are a

sequence of contours together with the corresponding
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Fig. 7. Theoretical development of the mode B bubble shape (a) and

rs = 0.259 and h0 = 108�.
points on an R0–V plot for the case rs = 0.259 and

h0 = 108� (Fig. 7), the variation of R0 (Fig. 8), the base

radius rb (Fig. 9), the height ys and the non-dimensional

pressure difference DPs (Fig. 10) vs the bubble volume V
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the corresponding locations in the R0–V plot (b) for the case
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Fig. 8. Influence of the Young contact angle h0 on the R0 distribution (a), (b) shows an enlarged view of (a) in the range

0.25 6 R0 6 0.5. For comparison the case rb = rs = 0.259 of mode A formation is added.
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Fig. 9. Variation of the radius of the bubble base rb for different Young contact angles h0 (a), (b) shows an enlarged view of (a) in the

range 0.2 6 rb 6 0.5. For comparison the case rb = rs = 0.259 of mode A formation is added.
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Fig. 10. Bubble height ys (a) and the non-dimensional pressure difference DPs (b) for different Young contact angles h0. For

comparison the case rb = rs = 0.259 of mode A formation is added.
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for different Young contact angles. In Figs. 8 and 9 the

corresponding case of mode A bubble formation with

rb = rs = 0.259 is added for comparison.

Depending on the Young contact angle, the spread-

ing of the bubble base results in a sharp change of the

quantities considered, forming a branch of constant

h = h0. With decreasing h0 the mode A distribution is left

even later. Stable bubble contours are also found to exist

for the case when the bubble base is contracting towards

the orifice, before the critical equilibrium is reached and

bubble release cannot be avoided (Fig. 9). If the mini-

mum instantaneous contact angle hmin for a given rs in

the mode A regime (see Table 1) is only slightly smaller

than h0 as defined, one further change in mode can occur

due to contraction of the base (Figs. 8(b) and 9(b), case

h0 = 60�), i.e. the bubble base returns to the orifice rim

and obeys the mode A regime (mode A! mode

B ! mode A).

The results show that with increasing Young con-

tact angle h0 the maximal static bubble volume is en-

hanced significantly. This increase in volume is mostly

due to the increase in the base radius (Fig. 9) and to

some extent to the bubble height (Fig. 10(a)). The latter

can be seen to stay constant for higher values of h0. If
we consider the influence of varying h0 on the non-

dimensional pressure difference, it comes out that with

increasing h0 the maximal pressure decreases. An

important feature of this plot is that for large values

of h0, DPs assumes negative values, i.e. the pressure

at the orifice is smaller than the hydrostatic pressure at

this height.

If the bubble follows mode B until departure, the val-

ues at critical equilibrium depend only on the Young con-

tact angle. The characteristic values of the cases

considered here are summarized in Table 2. The maximal

volume Vmax is compared with the data of Fritz [22]. His

results are interpolated from tables of Bashforth and
Table 2

Characteristic values of mode B bubble formation for the case rs = 0

h0 Vmax R0,max ys,max

60� 0.618 0.433 1.394

70� 0.571 0.420 1.060

80� 0.849 0.488 1.180

90� 1.206 0.532 1.284

100� 1.653 0.575 1.369

108� 2.078 0.610 1.428

110� 2.194 0.619 1.439

120� 2.830 0.662 1.496

130� 3.549 0.708 1.529

140� 4.327 0.756 1.547

150� 5.123 0.801 1.555

160� 5.869 0.847 1.546

170� 6.455 0.882 1.535

The maximal volume Vmax is compared with the data of Fritz [22].
Adams [23]. Also given in Table 2 are the maximal base

radii rb,max and the radii at the last stable point rb,release.

As mentioned above, the values in Table 2 are correct

also for other orifice radii, if rs is not too large and quasi-

static bubble formation with mode B departure occurs.

The results obtained show clearly the enhanced com-

plexity of the phenomena that occur if mode B forma-

tion takes place. Bubbles formed at small orifices are

more likely to change to mode B and, hence, can result

in huge bubbles compared with mode A: compare, for

example, Vmax = 0.325 for the case rs = 0.130 in Table

1 (mode A) with Vmax = 2.078 for the case of a Teflon

plate (h0 = 108�) in Table 2 (mode B). It can also be seen

that the maximum volume and height for the case

h0 = 60� (mode A ! mode B !mode A) exceeds the

value of h0 = 70� (mode A! mode B), which cannot

be expected if we look at the tendency of Vmax with h0.
For the experimental investigation of mode B, Teflon

plates were used, since Teflon is known to be strongly

water-repellent (h0 = 108�, [6]). Special care was taken

to reduce the roughness of the Teflon plates, since, in

contrast to mode A, the influencing parameter on the

characteristics is the Young contact angle. Agreement

with the predicted results were only possible with the

help of nearly smooth Teflon plates. Considered again

were the three orifice radii rs = 0.130, 0.259 and 0.518

(�rs ¼ 0:5, 1 and 2mm). Also the smallest orifice

rs = 0.130 placed on the rough brass plate was found

to spread away from the orifice edge (results not shown).

Some results are given in Fig. 11 for the case rs = 0.518

and Teflon. The corresponding contour obtained by the

theoretical solution was found by fixing the bubble base

radius rb and the height ys as for mode A. In Fig. 12, the

largest experimentally obtained bubble volumes for the

three different orifice radii using Teflon are depicted.

The differences in the areas included by the contours

are smaller than 3.5%. Hence the independence of the
.259 obtained theoretically

rb,release rb,max Vmax [22]

0.259 = rs 0.297 A! B! A

0.352 0.401 0.564

0.466 0.518 0.840

0.595 0.649 1.196

0.739 0.793 1.641

0.862 0.917 –

0.894 0.950 2.185

1.060 1.120 2.832

1.240 1.303 3.536

1.431 1.500 4.303

1.630 1.716 5.084

1.841 1.955 5.855

2.057 2.236 6.463
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Fig. 11. Comparison of theory and experiment. The orifice radius is rs = 0.518 and the plate material is Teflon.
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values at critical equilibrium from the orifice radius is

verified as predicted theoretically.

Similarly to Fig. 7(a), some measured contours are

depicted in Fig. 13. In both cases the plate material is

Teflon theoretically defined by the Young contact angle

on a perfectly smooth plate (h0 = 108�), whereby the

exact value of h0 of the three plates is not known. By

comparing the two figures, some features can be immedi-

ately noticed. In contrast to the theoretical curves the

instantaneous contact angle of the measured contours

can be seen to be not constant, but smaller than 108�.
This results in a bubble shape which is narrower than

predicted. Furthermore, the maximal height of the stable

bubble stages measured is significantly greater. This

behavior can be better understood with the help of Fig.

13(b). Here the two quantities rb and ys, which are ob-

tained experimentally from the extracted bubble outline,

are plotted from all outlines measured and compared
rb
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on Teflon (a) and a comparison of the experimental data with
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with the theoretical distributions of the cases of constant

h0 (rs = 0.259). The experimental results for the three ori-

fice radii agree well in the second half of formation. Dis-

agreement exists, as expected, for small values of rb since

initially rb is related to the orifice radius. Compared with

the theoretical distributions, the data points follow the

right tendency and are placed between the distributions

of h0 = 90� and 100�. At higher values of ys the radius of

the bubble base rb stays approximately constant and

thus crosses other curves of constant h0. It should be

noted that stable bubble contours are found which

are much higher than theoretically predicted near

h0 = 100�. The results in Fig. 13(b) can be understood

in the following way. The bubble base spreads outwards

with a constant contact angle, which is smaller than that

built under ideal conditions. This is due to the remaining

roughness of our Teflon plates, which leads to a decrease

in contact angle during outward movement (�receding
contact angle�, hR). On the other hand, an inward move-

ment causes an increase in the instantaneous contact an-

gle (�advancing contact angle�, hA). This phenomena is

called contact angle hysteresis [19]. In our case the model

of a receding contact angle describes the lower half of

the data points well, e.g. the distribution is parallel to

the constant h0 lines and lower than h0 = 108� of Teflon.
For the second part, where rb is approximately constant,

the bubble base seems to be somehow fixed. Figs. 11(b)

and 13(a) indicate that the instantaneous contact angle

in the later stages can be seen to be increased, but a sig-

nificant inward movement cannot be recognized. This is

in agreement with the assumption of Dussan [19] that

for a given material system an interval between hR and

hA exists where no movement occurs. If we assume the

bubble base to be ‘‘fixed’’ at this position, this would ex-

plain why the maximal bubble height ys,max shown in

Fig. 13(b) is much higher than expected and agrees with

ys,max of mode A (Table 1).
5. Conclusions

Bubble formation under quasi-static conditions was

investigated theoretically and experimentally. Based on

the Laplace equation, predictions are given for two dif-

ferent modes of bubble formation depending on the

Young contact angle, which is defined by the solid, gas

and liquid employed in the numerical and experimental

investigations. In mode A formation, the bubble base re-

mains attached to the orifice rim, whereby the formation

of bubbles under spreading of the bubble base is called

mode B. The analysis of the results obtained led to the

following conclusions:

• The predicted bubble shapes compare extremely well

with the experimental counterpart for both modes of

formation.
• The characteristics of complete static formation proc-

esses were obtained for the two modes theoretically,

by arranging families of bubble profiles, for example,

for a given orifice radius with increasing volume and

height for mode A.

• Mode A formation was found to depend only on the

non-dimensional orifice radius (rs ¼ �rs=a with the

Laplace constant a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r=ðgðql � qgÞÞ

q
). The char-

acteristics at critical equilibrium, i.e. at the last stable

state, at which the bubble volume has its maximum,

agree well with the experiments. The characteristics

considered were the bubble volume, height, the

radius of curvature at the apex, the instantaneous

contact angle at the bubble base and the non-dimen-

sional pressure difference at the orifice mouth.

• The transition from mode A to mode B bubble for-

mation is dictated by the Young contact angle. Tran-

sition occurs if the instantaneous contact angle at the

bubble base falls below the Young contact angle.

Small orifice radii favor spreading of the bubble base,

since smaller values of the instantaneous contact

angle are reached during the formation process. For

mode B formation, the bubble was found to contract

towards the orifice before detachment. Hence

sequences including two transitions (A ! B ! A)

are also described.

• In addition to the fluid properties, the Young contact

angle defines the maximum stable size of the mode B

bubble. A non-wetting plate material (Teflon) was

used for the experiments of mode B formation. The

experimental results agree with the predictions in

general. Disagreement due to the surface roughness

of the plate is explained by means of an observed

contact angle hysteresis.

• The plate material was shown to have a strong influ-

ence of the characteristics of the formation process.

For instance, large differences in bubble volume at

detachment were found between modes A and B for-

mation for a constant orifice radius.
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